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Diagnosis of Alzheimer’s Disease
Using Brain Network
Ramesh Kumar Lama and Goo-Rak Kwon*

The Alzheimer’s Disease Neuroimaging Initiative, Department of Information and Communication Engineering, Chosun
University, Gwangju, South Korea

Recent studies suggest the brain functional connectivity impairment is the early event
occurred in case of Alzheimer’s disease (AD) as well as mild cognitive impairment (MCI).
We model the brain as a graph based network to study these impairment. In this paper,
we present a new diagnosis approach using graph theory based features from functional
magnetic resonance (fMR) images to discriminate AD, MCI, and healthy control (HC)
subjects using different classification techniques. These techniques include linear
support vector machine (LSVM), and regularized extreme learning machine (RELM). We
used pairwise Pearson’s correlation-based functional connectivity to construct the brain
network. We compare the classification performance of brain network using Alzheimer’s
disease neuroimaging initiative (ADNI) datasets. Node2vec graph embedding approach
is employed to convert graph features to feature vectors. Experimental results show that
the SVM with LASSO feature selection method generates better classification accuracy
compared to other classification technique.

Keywords: Alzhieimer’s disease, brain network, node2vec, extreme learning machine, support vector machine

INTRODUCTION

Alzheimer’s disease (AD), which causes majority of dementia is a progressive neurodegenerative
disease (American Psychiatric Association, 1994; Liu F. et al., 2014; Schmitter et al., 2015;
Alzheimer’s association, 2016). The subtle AD neuropathological process begins years before the
visible progressive cognitive impairment, which is trouble to remember and learn new information.
Currently there is no cure and treatment to slow or stop its progression. Currently, more research
works are focused toward earlier intervention of AD. Thus accurate diagnosis of disease at its early
stage makes great significance in such scenario.

With the availability of recent neuroimaging technology, promising result is obtained in the early
and accurate detection of AD (Hanyu et al., 2010; Górriz et al., 2011; Gray et al., 2012). The study of
progression of disease and early detection is carried out by using different imaging models, such as
electroencephalography (EEG) (Pfefferbaum et al., 2000), functional magnetic resonance imaging
(fMRI) (Masliah et al., 1993), single-photon emission computed tomography (SPECT) (Chen et al.,
2013) and positron emission tomography (PET) (Ly et al., 2014).

Similarly, structural magnetic resonance imaging (MRI) (Hanyu et al., 1999; Canu et al., 2010;
Bendlin et al., 2012) is the most commonly used imaging system for study of AD. The feature
extracted from MRI is typically gray matter volumes and measured as important biomarker for the
study of neurodegeneration, alterations of hippocampal white matter pathways is often observed
in AD (Delbeuck et al., 2003; Liu Y. et al., 2014). Several studies reveal the alterations in widely
distributed functional and structural connectivity pairs are prevalent in AD and mild cognitive
impairment (MCI) (Delbeuck et al., 2007; Acosta-Cabronero et al., 2012). Additionally, in recent
studies, the resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used
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for the investigations of progression of AD (Stam et al., 2006; Sorg
et al., 2007; Supekar et al., 2008; Doan et al., 2017). This imaging
system evaluates the impulsive variabilities seen in the blood
oxygenation level-dependent (BOLD) indications in various
regions of the brain. Several studies are carried out based on
aberrant regional spontaneous fluctuation of BOLD, functional
connectivity and alteration in functional brain network. These
studies are carried out in different networks, such as default mode
network, somatomotor network, dorsal attention network, limbic
network, and frontoparietal control network (Bullmore and
Sporns, 2009). Thus, the graph theory based network analyses of
human brain functional connectomes, provides better insights of
the network structure to reveal abnormal patterns of organization
of functional connectivity in AD infected brain (Rubinov and
Sporns, 2010; Sporns, 2011).

Graph theory is a mathematical approach to study complex
networks. Network is constructed of vertices which are
interconnected by edges. Vertices in our case are brain regions.
Graph theory is widely used as tool for identifying anatomically
localized subnetworks associated with neuronal alterations in
different neurodegenerative diseases (Bajo et al., 2010). In
fMRI images, graph represents causal relations or correlations
of different nodes in constructed networks. However, the
brain network built by graph has non-Euclidian characteristics.
Thus, applying machine learning techniques to analyze the
brain networks is challenging. We use graph embedding to
transform graphs to a vector or set of vectors to overcome
this problem. Embedding captures the graph topology, vertex-
vertex relationship, and other relevant graph information. In the
current study, we used node2vec graph embedding technique
to transform vertex and edge of brain network graph to
feature vector. With the help of this model we have analyzed
and classified the networks of brain from fMRI data into
AD, MCI, and HC.

MATERIALS FOR THE STUDY

fMRI Dataset
In our study, we have used the dataset from Alzheimer’s disease
neuroimaging initiative database (ADNI)1. The ADNI database
was launched in 2004. The database consists of subjects of
age ranging from 55–90 years. The goal of ADNI is to study
the progression of the disease using different biomarkers. This
includes clinical measures and assesses of the structures and
functions of brain for the course of different disease states.

All participants were scanned using 3.0-Telsa Philips
Achieva scanners at different centers. Same scanning
protocol were followed for all participants and the set
parameters were ratio of Repetition Time (TR) to Echo
Time (TE) i.e., TR/TE = 3000/30 ms, 140 volumes, also voxel
thickness as 3.3 mm, acquisition matrix size = 64 × 64, 48
slices, flip angle = 80◦ Similarly, 3D T1-weighted images
were collected using MPRAGE sense2 sequences with
acquisition type 3D, field strength = 3 Tesla, flip angle

1http://adni.loni.usc.edu/

9.0 degree, pixel spacing X = 1.0547000169754028 mm;
Pixel Spacing Y = 1.0547000169754028 mm, slice
thickness = 1.2000000476837158 mm; echo time (TE) 2.859 ms,
inversion time (TI) 0.0 ms, repetition time (TR) 6.6764 ms and
weighting T1. We selected subjects as specified in Table.

Subjects
We selected 93 subjects from ADNI2 cohort. The purpose of
ADNI2 is to examine how brain imaging and other biomarkers
can be used to measure the progression of MCI and early AD. The
ADNI selects and categorizes participants in specific group based
on certain inclusion criteria. The criteria are well defined in2. We
selected the subjects according to availability of both MRI and
fMRI data. Thus, the subjects with following demographic status
as shown in Table 1 with following average age, clinical dementia
rating (CDR) and mini-mental state estimation (MMSE) out of
all available data in ADNI2 cohort were selected in our study.

1. 31 HC subjects: 14 males, 17 females; age± SD= 73.9± 5.4
years with the mini-mental state estimation (MMSE) score
of 28.9± 1.65 and the range was 24–30.

2. 31 MCI subjects: 17 males, 14 females;
age ± SD = 74.5 ± 5.0 with the MMSE score of
27.5± 2.02, and range was 22–30.

3. 31 AD subjects: 13 males, 18 females; age± SD= 72.7± 7.0
with MMSE= 20.87± 3.6, and the range was 14–26.

Data Preprocessing
We used data processing subordinate for the resting state
fMRI via DPARSF3 (Chao-Gan and Yu-Feng, 2010) and the
statistical parametric mapping platform via SPM84 aimed at
the preprocessing of rs-fMRI data. All the images initially
obtained from scanner were in the format of digital imaging
and communications in medicine (DICOM). We converted these
images to neuroimaging informatics technology initiative (NIfTI)
file format. Signal standardization and participant’s adaptation
to the noise while scanning each participant are carried out by
discarding the first 10 time points for each participant. Next, we
preformed preprocessing operation through following steps:

For slice-timing correction last slice was referred reference
slice. Friston 24-parameter model with 6 parameters of head
motion, 6 parameters of head motion from the previous time
point, and 12 corresponding squared items were employed for

2https://www.nia.nih.gov/alzheimers/clinical-trials/alzheimers-disease-
neuroimaging-initiative-2-adni2
3http://www.restfmri.net
4http://www.fil.ion.ucl.ac.uk/spm

TABLE 1 | Summary of subject’s demographic status.

Number of HC (n = 31) MCI (n = 31) AD (n = 31)

subjects Mean (SD) Mean (SD) Mean (SD)

Age (years) 73.9 ± 5.4 74.5 ± 5.0 SD = 72.7 ± 7.0

Global CDR 0.04 ± 0.13 0.5 ± 0.18 0.95 ± 0.30

MMSE 28.9 ± 1.65 27.5 ± 2.02 20.87 ± 3.6
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realignment for head movement compensation. Similarly, after
the realignment, individual structural images (T1-weighted
MPRAGE) were registered to the mean functional image.
For the standardization of the rs-fMRI toward the original
place was accomplished with the help of diffeomorphic
anatomical registration through exponentiated lie algebra
(DARTEL) as in Ashburner (2007) (resampling voxel
size = 3 mm × 3 mm × 3 mm). A 6 mm full width at
half-maximum (FWHM) Gaussian kernel spatial smoothing was
employed for the smoothing. Next, we performed linear trend
exclusion and also the temporal band pass filtering which ranges
at (0.01 Hz < f < 0.08 Hz) on the time series of each voxel.
Finally, cerebrospinal as well as white matter signals along with
six head-motion parameters were regressed out to reduce the
effects of nuisance signals.

Proposed Framework
This proposed method consists of the following four major
functional steps as shown in Figure 1:

1. Construct a brain network using graph theory.
2. Convert graph to feature vector using node2vec graph

embedding.
3. Reduce the features.
4. Perform the classification using regularized extreme

learning machine (RELM) and linear support vector
machine (LSVM).

Construction of Brain Networks
For the construction of network from fMR images, we first
preprocessed the raw fMR data as described in data preprocessing
section. Next, we used the automated anatomical labeling (AAL)
atlas to identify the brain regions of interest (ROI). The whole
image was divided in 116 regions with each hemisphere. Next, we
calculate the average time series of each ROI for each subject by
averaging their time series across the voxels within each ROI. For

each subject, a matrix of 130 rows and 116 columns was obtained.
In the matrix, every row denotes the time series conforming to
a give ROI, while information of total regions at a definite time
point are stored at each column. The mean time series of each
brain region were obtained for each individual by averaging the
time series within the region. For Li = (li(1), li(2), . . . , li(n)) and
Lj = (lj(1), lj(2), . . . , lj(n)) are two n length time series of brain
region i and j, the Pearson’s correlation (PC) between them can
be calculated as

PCij =
cov(Li, Lj)

σLiσLj
(1)

Where cov(Li, Lj) is covariance of variables Li and Lj. Similarly,
σLi and σLj are standard deviation of variables Li and Lj. This
operation results into 116× 116 correlation matrix which defines
the relation amongst different regions of brain and matches to the
functional connectivity network.

Graph-Embedding
Graphs are complex data structures, consisting a finite set
of vertices and set of edges which connect a pair of nodes.
One of the possible solutions to manipulate prevalent pattern
recognition algorithms on graphs is embedding the graph into
vector space. Indeed, graph embedding is a bridge between
statistical pattern recognition and graph mining. We employ
the node2vec (Grover and Leskovec, 2016) algorithm as graph
embedding tool in this study. The node2vec algorithm aims to
learn a vectorial representation of nodes in a graph by optimizing
a neighborhood preserving objective. It extends the previous
node embedding algorithm Deepwalk (Canu et al., 2010) and
it is inspired from the state of art word embedding algorithm
word2vec (Delbeuck et al., 2003).

In word2vec, given a set of sentences also known as corpus, the
model learns word embedding by analyzing the context of each
word in the body. The word2vec uses the neural network with one
hidden layer to transform words into embedding vectors. This
neural network is known as Skip-gram. This network is trained to

FIGURE 1 | Block diagram of the proposed diagnosis system.

Frontiers in Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 605115

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-605115 February 5, 2021 Time: 12:25 # 4

Lama and Kwon Brain Network Based Alzheimer’s Disease Diagnosis

predict the neighboring word in the sentence. It accepts the word
at the input and is optimized such that it predicts the neighboring
words in a sentence with high probability.

node2vec applies the same embedding approach to train and
predict the neighborhood of a node in graph. However, word is
replaced by the node and the bag of nodes is used instead of
corpus. The sampling is used to generate this bag of nodes from a
graph. Generally, the graph embedding consists of three steps:

Sampling
A graph is sampled with random walks. This random walk results
in bag of nodes of neighborhood from sampling. The bag of nodes
acts as a collection of contexts for each node in the network.
The innovation of node2vec with respect to Deepwalk is the use
of flexible biased random walks on the network. In Deepwalk,
random walk is obtained by a uniform random sampling over the
linked nodes, while node2vec combine two different strategies for
the network exploration: depth-first search (DFS) and breadth-
first-search (BFS). For current random walk position at node v
and traversed position at previous step at node t and neighboring
nodes x1, x2 and x3, the sampling of next node x is determined
by evaluating the unnormalized transition probabilities πvx on
edge (t, v) with the static edge weight wvx as shown in Figure 2.
This unnormalized transition probability is estimated based on
search bias α defined by two parameters p and q such that πvx =

αpq(t, x) · wvx where.

αpq(t, x) =


1
p
, if dtx = 0

1, if dtx = 1
1
q
, if dtx = 2

(2)

Here dtx denotes the shortest path distance between nodes t and x.
The parameter p determines the likelihood of sampling the

node t again during random walk. When the value of p is high

t

v

x1
x2

x3

FIGURE 2 | Illustration of node selection in node2vec algorithm.

revisit of the node possibility is low. Similarly the parameter q
allows to different between local and global nodes. If q > 1, the
random walk has the likelihood of sampling the nodes around
the node v is high.

Training Skip-Gram
The bag of nodes generated from the random walk is fed into
the skip-gram network. Each node is represented by a one-hot
vector and maximizes the probability for predicting neighbor
nodes. The one-hot vector has size same as the size of the set of
unique words used in the text corpus. For each node only one
dimension is equal to one and remaining are zeros. The position
of dimension having one in vector defines the individual node.

Computing Embedding
The output of the hidden layer of the network is taken as the
embedding of the graph.

Feature Reduction Techniques
Support Vector Machine-Recursive Feature
Elimination (SVM-RFE)
Support vector machine-recursive feature elimination is a
multivariate feature reduction algorithm is based on wrapper
model. This method is recursive and in each of iteration of the
RFE, LSVM model is trained. This method starts by constructing
a model on the complete set of features and computing the
importance score for each feature. The least important features
are removed and the model is rebuilt and the importance scores
are again computed. This recursive procedure is continued until
all the features are eliminated. Then, the features are ranked
according to the order of elimination. A detailed description
of SVM-RFE procedure presented in a previous paper (Guyon
et al., 2002). In this work, after applying SVM-RFE, the most
significant training features that make the most of cross-validated
accurateness are kept to train the classifiers.

Least Absolute Shrinkage and Selection Operator
(LASSO)
Least absolute shrinkage and selection operator (Tibshirani,
1996) is a powerful method which is used to remove insignificant
features. Two major tasks of this method are regularization and
feature selection. This method minimizes residual sum of squares
of the model using ordinary least square regression (OLS) by
placing a constraint on the sum of the absolute values of the
model parameters. LASSO computes model coefficients β by
minimizing the following function:

RSSLASSO(βi, β0)

=
arg min

β

 n∑
i=1

(
yi − (βixi + β0)

)2
+ α

k∑
j=1

∣∣βj∣∣
 (3)

Where, xi is the graph embedded feature input data, a vector of
k values at observation j, and n is the number of observations. yi
is the response at observation i. α is a non-negative user defined
regularization parameter. This parameter controls the strength of
penalty. When α is sufficiently large then coefficients are forced
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to be zero which leads to produce few relevant features. If α

approaches 0 the model becomes OLS with more relevant features
(Hanyu et al., 2010).

Features Selection With Adaptive Structure Learning
(FSASL)
Features selection with adaptive structure learning is an
unsupervised method which performs data manifold learning
and feature selection. This method first utilizes the adaptive
structure of the data to construct the global learning and
the local learning. Next, the significant features are selected
by integrating both of them with L2,1-norm regularizer. This
method utilizes the sparse reconstruction coefficients to extract
the global structure of data for global learning. In sparse
representation, each data sample xi can be approximated as a
linear combination of all the other samples, and the optimal
sparse combination weight matrix.

For local learning, this method directly learns a Euclidean
distance induced probabilistic neighborhood matrix
(Du and Shen, 2015).

min
W,S,P

(‖WTX −WTXS‖2 + α‖S‖1)

+β

n∑
i,j

(‖WTxi −WTxj‖2Pij + µP2
ij)+ γ‖W‖21

s.t. Sii = 0, P1n = 1n, P ≥ 0,WTXXTX = I (4)

Where, α is used to balancing the sparsity and the
reconstruction error, β and γ are regularization parameters for
global and local structure learning in first and second group
and the sparsity of feature selection matrix in the third group.
Similarly, S is used to guide the search of relevant global feature
and P defines the local neighborhood of data sample xi.

Local Learning and Clustering Based Feature
Selection (LLCFS)
LLCFS is clustering based feature selection method. This method
learns the adaptive data structure with selected features by
constructing the k-nearest neighbor graph in the weighted feature
space (Zeng and Cheung, 2011). The joint clustering and feature
weight learning is performed by solving the following problem.

min
Y,{Wi,bi}ni=1,z

n∑
i=1

c∑
c′=1

 ∑
xj∈Nxi

β(Yic′ − xTj W
i
c′ − bic)

2

+ (Wi
c′)

Tdiag(z−1)Wi
c′


s.t. 1Td z = 1, z ≥ 0 (5)

Where z the feature weight vector and Nxi is the k-nearest
neighbor of xi based on z weighted features.

Pairwise Correlation Based Feature Selection (CFS)
CFS selects features based on the ranks attributes according to an
empirical evaluation function based on correlations (Hall, 2000).

Subsets made of attribute vectors are evaluated by evaluation
function, which are associated with the labels of class, however
autonomous among each another. CFS accepts that unrelated
structures express a low correspondence with the class and hence
they are ought to be overlooked by the procedure. Alternatively,
additional features must be studied, as they are typically hugely
correlated with one or additional amount of other features.

Classification
Two of the prevalent machine-learning classification algorithms
namely, LSVM, and RELM are studied in this article. The
results acquired through the experiments of these classifiers
show that RELM classifier performs better than others
respective of the computation time required and accuracy
value. Each of the methods is described in brief in the
subsections below.

Support Vector Machine Classifier
Linear support vector machine (Cortes and Vapnik, 1995) is
principally a supervised binary classifier that classifies separable
and non-separable data. This type of classification is usually
used in the field of neuroimaging and is deliberated as
one of the finest machine-learning method in the domain
of the neuroscience for past decades. It discovers the best
hyperplane to split both classes which has optimum boundary
from support vectors for the duration of the training. The
classifier decides on the basis of the estimated hyperplane to
test the new data points. For the patterns that are linearly
separable, LSVM can be used. Alternatively, LSVM is not
capable of guaranteeing improved performance in the complex
circumstances with the patterns that are not separable. In
such circumstances, Kernel trick is used to extend the LSVM.
The input arrays of linear SVM are plotted to the space
dimensions using the kernels. Both the linear as well as non-
linear radial basis function (RBF) kernels are extensively trained
using SVM kernels.

Extreme Learning Machine
ELM (Extreme Learning Machine) is single layer feedforward
neural networks (Huang et al., 2006; Zhang et al., 2015). This
neural network is implemented using Moore-Penrose generalized
inverse to set its weights (Peng et al., 2013; Cao et al., 2016).
Thus, this learning algorithm doesn’t require iterative gradient-
based backpropagation to tune the artificial hidden nodes. Thus
this method is considered as effective solution with extremely
reduced complexity (Cambria and Huang, 2013; Qureshi et al.,
2016). ELM with L number of hidden nodes and g(x) as activation
function is expressed as

YL(x) =
L∑

i=1

βihi (x) = h(x)βi (6)

Where x is an input vector. hi(x) is the input to output node from
hidden node output. β = [β1, ......, β2]T is the weight matrix of
ith node. The input weight wi and the hidden layer biases bi are
generated randomly before the training samples are acquired.
Thus iterative back-propagation to tune these parameters is not

Frontiers in Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 605115

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-605115 February 5, 2021 Time: 12:25 # 6

Lama and Kwon Brain Network Based Alzheimer’s Disease Diagnosis

needed. Given N training samples
{(
xj, tj

) }N
j=1. The objective

function of ELM is expressed as,

‖H
(
w1, ....wÑ, b1, ...., bÑ

)
β̂− T ‖= min

β
‖Hβ̂− T ‖ (7)

with

H
(
w1, ....wÑ, b1, ...., bÑ

)
=

 g
(
w1.x1 + b1

)
· · · g

(
wL.x1 + bL

)
... · · ·

...

g
(
w1.xN + b1

)
· · · g

(
wL.xN + bL

)
 (8)

, β =

 βT1
...

βTL

T =

 tT1
...

tTL


Here H represents the hidden layer output matrix and T
represents output label of training data matrix. The output weight
matrix β is calculated as

β = H+T (9)

Here, H+ represents the Moore-Penrose generalized inverse
of the matrix H. Since ELM learning approach requires no
backpropagation, this method is best suited for the binary and
multiclass classification of big data and neuroimaging features.
However the decrease in computation time comes with the
expense of increase in the error in the output, which ultimately
decreases the accuracy. Thus, a regularization term is added
to improve generalization performance and make the solution
more robust. The output weight of the regularized ELM can be
expressed as

β =

(
I
C
+HTH

)−1
HTT (10)

Performance Evaluation
We evaluated the performance using the SVM and RELM
classifiers for each specific test including the binary and multiclass
test. Confusion matrix is constructed to visualize the performance
of the binary classifier in a form of a as shown in Table 2.
Correct numbers of prediction of classifier are placed on the
diagonal of the matrix. These components are further divided
into true positive (TP), true negative (TN), which represent
correctly identified controls. Similarly, the false positive (FP)
and false negative (FN) represent the number of wrongly
classified subjects.

TABLE 2 | Confusion matrix.

Accurate Class Predicted Class

C1 C2

C1 TP FN

C2 FP TN

The proportion of subjects which are correctly classified by the
classifier is expressed as the accuracy.

ACC =
TP + TN

TP + TN + FP + FN
(11)

However, for dataset with unbalanced class distribution accuracy
may be a good performance metric. Thus two more performance
are used. These metrics are known as sensitivity and specificity
are used.

SEN =
TP

TP + FN
(12)

SPE =
TN

TN + FP
(13)

The sensitivity (SEN) measures the rate of true positives (TP)
while the specificity (SPE) measures rate of true negatives (TN).

RESULTS

Demographic and Clinical Findings
We did not find a significant group difference in age in AD versus
HC, AD versus MCI and MCI versus HC. However significant
group difference was found in MMSE (P < 0.01) and CDR
(P<0.01) in all group combinations. The gender proportion on
both AD and HC is male dominant. AD has 54.83% and HC has
45.16% male dominance. Table 1 shows the detailed descriptions
and analysis of these variables.

Classification Results
We have observed the performance of our proposed algorithm
and compared it with that of the RELM classifier and LSVM
classifier for respective test comprising the binary classification.
The performance shown by the binary classifier is envisaged
as a confusion matrix as presented in Table 1. Elements
on the diagonal elements of the matrix specify the accurate
estimations by the classifier. These elements are further
divided as true positive (TP) and true negative (TN), which
signifies appropriately recognized controls. Correspondingly,
all the erroneously classified matters can be symbolized by
false positive (FP) and false negative (FN). We evaluated
the feature selection and classification algorithms on data
set using a 10-flold cross validation (CV). First, we divided
the subjects into 10 equally sized subsets: each of these
subsets (folds), containing 10% of the subjects as test set
and remaining 90% for training set. Then feature ranking
was performed on the training sets. We used different
algorithms to rank the features. Linear SVM and RELM
classifiers were trained using these top-ranked features.
For each training and test we performed separate feature
selection to avoid the feature selection bias during 10-fold
cross validation. We calculated cross validated average
classification accuracy and standard deviation for specific
feature using k-top most ranked features, where k ranges
from 1 to 50. We repeatedly tested for 5 iterations and
plotted the mean accuracy and standard deviation as shown
in Figure 3 for LASSO feature selection and RELM classifier.

Frontiers in Neuroscience | www.frontiersin.org 6 February 2021 | Volume 15 | Article 605115

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-605115 February 5, 2021 Time: 12:25 # 7

Lama and Kwon Brain Network Based Alzheimer’s Disease Diagnosis

FIGURE 3 | Average accuracy and standard deviation for AD against HC using RELM classification method on reduced datasets using LASSO feature selection.

TABLE 3 | 10-fold cross-validation binary mean classification performance for AD
against HC using RELM classifier using different feature selection methods.

Feature
selection
method

Performance
metrics

Mean (%) Standard
deviation

Max (%) Min (%)

LASSO Accuracy 87.723 0.468 88.663 85.82

Sensitivity 90.93 0.341 91.525 89.50

Specificity 84.52 0.792 85.891 82.14

F-measure 0.883

FSASL Accuracy 76.181 1.069 78.551 73.45

Sensitivity 76.233 1.255 78.839 72.58

Specificity 75.664 1.264 77.868 72.20

F-measure 0.785

LLCFS Accuracy 75.737 1.004 78.690 71.64

Sensitivity 74.205 1.069 77.031 70.11

Specificity 77.881 1.378 81.036 73.64

F-measure 0.817

CFS Accuracy 80.517 1.737 82.86 74.005

Sensitivity 80.035 1.813 82.22 73.25

Specificity 79.16 1.977 81.79 73.084

F-measure 0.867

SVM-RFE Accuracy 68.57 1.186 70.474 65.60

Sensitivity 75.99 1.676 78.832 71.715

Specificity 60.92 1.301 63.426 57.34

F-measure 0.6743

Finally, we calculated the mean accuracy and standard
deviation of highest ranked features for different feature
selection and classification methods as depicted in Tables

TABLE 4 | 10-fold cross-validation binary mean classification performance for HC
against MCI using RELM classifier using different feature selection methods.

Feature
selection
method

Performance
metrics

Mean (%) Standard
deviation

Max (%) Min (%)

LASSO Accuracy 96.11 0.859 96.88 91.33

Sensitivity 95.03 1.080 95.93 89.84

Specificity 97.18 0.798 97.84 92.93

F-measure 0.973

FSASL Accuracy 85.85 0.9129 87.503 80.88

Sensitivity 79.27 0.986 81.484 76.01

Specificity 92.03 1.4433 93.308 85.40

F-measure 0.937

LLCFS Accuracy 82.29 0.624 83.39 80.77

Sensitivity 77.54 0.73 78.566 75.408

Specificity 86.81 1.081 88.41 83.74

F-measure 0.85

CFS Accuracy 80.67 1.68 90.427 74.48

Sensitivity 88.43 2.328 74.968 80.49

Specificity 72.38 1.3677 74.486 68.58

F-measure 0.795

SVM-RFE Accuracy 80.20 0.920 82.001 77.89

Sensitivity 84.00 1.207 85.99 79.86

Specificity 75.91 1.251 77.806 73.29

F-measure 0.815

3–8 and the bold values in each table indicate the
maximum value of accuracy, sensitivity and specificity.
Maximum and minimum value of accuracy, sensitivity
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TABLE 5 | 10-fold cross-validation binary mean classification performance for MCI
against AD using RELM classifier using different feature selection methods.

Feature
selection
method

Performance
metrics

Mean (%) Standard
deviation

Max (%) Min (%)

LASSO Accuracy 93.86 0.766 94.90 89.128

Sensitivity 91.93 0.757 93.67 89.836

Specificity 95.92 1.204 96.61 88.580

F-measure 0.968

FSASL Accuracy 85.358 1.030 86.76 80.29

Sensitivity 85.088 0.951 86.61 80.47

Specificity 85.201 1.4227 86.829 79.27

F-measure 0.879

LLCFS Accuracy 90.32 1.06316 91.88 86.50

Sensitivity 93.33 2.0782 95.63 87.43

Specificity 87.49 0.9471 89.56 85.75

F-measure 0.895

CFS Accuracy 79.13 1.2768 81.595 75.10

Sensitivity 83.59 1.2281 85.60 78.94

Specificity 74.83 1.7084 78.927 70.54

F-measure 0.795

SVMRFE Accuracy 77.5974 0.8177 78.93 74.98

Sensitivity 76.802 1.1299 79.225 73.26

Specificity 78.182 0.8359 79.289 75.44

F-measure 0.8169

TABLE 6 | 10-fold cross-validation binary mean classification performance for AD
against HC using LSVM classifier using different feature selection methods.

Feature
selection
method

Performance
metrics

Mean (%) Standard
deviation

Max (%) Min (%)

LASSO Accuracy 90.63 0.515 91.51 88.52

Sensitivity 87.044 0.585 88.03 85.44

Specificity 94.315 0.671 95.35 90.95

F-measure 0.958

FSASL Accuracy 82.895 1.4020 85.60 80.19

Sensitivity 78.206 1.5118 81.99 75.21

Specificity 87.712 1.7666 90.02 82.85

F-measure 0.8360

LLCFS Accuracy 81.19 1.438 83.37 77.68

Sensitivity 85.15 2.087 88.068 80.49

Specificity 76.39 1.25 78.983 73.65

F-measure 0.8095

CFS Accuracy 88.37 1.78 91.18 83.25

Sensitivity 87.95 1.72 91.98 84.52

Specificity 88.79 2.17 90.71 81.28

F-measure 0.903

SVMRFE Accuracy 65.99 1.48 68.51 62.05

Sensitivity 65.03 1.41 67.73 61.46

Specificity 67.40 2.327 70.53 61.27

F-measure 0.671

and specificity are calculated amongst corresponding
values estimated for highest ranked features as shown
in Figure 3.

TABLE 7 | 10-fold cross-validation binary mean classification performance for HC
against MCI using LSVM classifier using different feature selection methods.

Feature
selection
method

Performance
metrics

Mean (%) Standard
deviation

Max (%) Min (%)

LASSO Accuracy 98.91 0.456 99.25 95.82

Sensitivity 99.68 0.56 100.0 95.48

Specificity 98.11 0.46 98.51 96.00

F-measure 0.9856

FSASL Accuracy 81.28 1.010 83.01 77.64

Sensitivity 84.61 1.389 86.62 79.81

Specificity 77.92 1.121 79.81 73.038

F-measure 0.833

LLCFS Accuracy 76.27 0.631 78.31 74.70

Sensitivity 71.08 1.388 75.37 68.23

Specificity 81.40 1.005 82.69 76.80

F-measure 0.800

CFS Accuracy 86.16 2.25 88.96 80.47

Sensitivity 92.28 2.33 95.11 86.14

Specificity 79.72 2.375 82.75 73.88

F-measure 0.8517

SVMRFE Accuracy 71.92 0.832 74.43 69.93

Sensitivity 66.90 1.493 71.14 63.53

Specificity 76.68 1.187 79.61 72.88

F-measure 0.7762

TABLE 8 | 10-fold cross-validation binary mean classification performance for MCI
against AD using LSVM classifier using different feature selection methods.

Feature
selection
method

Performance
metrics

Mean (%) Standard
deviation

Max (%) Min (%)

LASSO Accuracy 97.80 0.9862 98.32 91.99

Sensitivity 97.62 1.0065 97.92 91.73

Specificity 97.74 1.0720 98.5 92.07

F-measure 0.98

FSASL Accuracy 83.71 0.90 85.00 78.15

Sensitivity 90.63 1.57 92.23 84.12

Specificity 77.10 1.098 79.74 72.55

F-measure 0.838

LLCFS Accuracy 90.04 1.43 92.02 86.07

Sensitivity 90.23 1.43 91.94 86.74

Specificity 90.09 1.77 92.52 84.62

F-measure 0.903

CFS Accuracy 84.41 1.95 86.81 79.18

Sensitivity 90.37 2.14 93.26 83.73

Specificity 78.10 1.90 80.79 72.84

F-measure 0.83

SVMRFE Accuracy 82.87 0.903 83.96 78.832

Sensitivity 81.68 1.22 84.34 77.10

Specificity 84.11 0.94 85.21 80.72

F-measure 0.854

Tables 3–5 show the binary classification results using
RELM classifier with five different feature selections. Results
obtained through the feature selection methods are compared in
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A B
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FIGURE 4 | The effect of different parameter values of Walk Length of Node2vec on performance (A) AD against HC, (B) HC against MCI, (C) AD against MCI.

regards to the performance metrics such as accuracy, sensitivity
specificity and f-measure. Table 3 summarizes the AD versus HC
classification. The LASSO feature selection method outperforms
all other methods consider with the highest mean accuracy
of 87.72%, mean specificity of 90.93% and mean sensitivity
of 84.52%. Additionally, the standard deviation of LASSO is
0.4 which is less than less than 1. Similarly, the classification
results of AD versus MCI and NC versus MCI using RELM are
shown in Tables 4, 5. As shown in Table 4, the highest mean
accuracy is 96.11 (±0.859) for HC against MCI classification and
93.86 (±0.766) for MCI against AD classification. The standard
deviation is less than 1 in both mean classifications. Additionally
the F-score is high in all three classifications (0.883 for HC against
AD, 0.973 for HC against MCI, 0.968 for AD against MCI)

using LASSO feature section method compared to other feature
selection methods. The value of standard deviation less than one
indicates that the data points of accuracy estimated tend to be
close to the mean. Hence from the result it is very evident that the
less inflated accuracy can be obtained using LASSO. Similarly, the
high F-score indicates precision of classification is high compared
to other feature selection methods.

Similarly, the comparison of classification of HC, MCI
and AD using LSVM classifier with different feature selection
methods are shown in Tables 6–8. Similar to RELM, the
highest performance result in terms of mean accuracy, specificity,
sensitivity and F-score was obtained by using LASSO for all
three classification tests. As shown in Table 6, we obtained
the accuracy of 90.63% specificity of 94.315% and sensitivity
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of 87.95% and F-score of 0.958 for AD against HC. In
Table 7 the highest mean accuracy, specificity, sensitivity and
F-score are obtained as 98.9, 99.68, 98.11, and 0.9856% for
HC against MCI classification. Similarly, Table 8 shows the
classification performance of AD against MCI. The highest mean
accuracy, specificity, sensitivity and F-score are 97.81, 97.62,
97.74, and 0.98%.

From all these results, it is clearly evident that the use
of LASSO as feature selection method is ideal choice for
the classification using RELM and LSVM classifiers for the
graph embedded data.

From Tables 3–5 the highest classification accuracies of RELM
classifier using LASSO feature selection for AD against HC, HC
against MCI and MCI against AD are 87.723% (±0.468), 96.11%
(±0.859), and 93.86 %(±0.766). Similarly, from Tables 6–8 the
highest classification accuracies of RELM classifier using LASSO
feature selection for AD against HC, HC against MCI and
MCI against AD are 90.63% (±0.515), 98.91% (±0.456), and
97.80% (±0.9862).

Now, the comparison of performance between two classifiers
shows that the SVM can classify the given dataset more
accurately with the highest mean accuracy for all three binary
classifications. However, the small standard deviation of the
classification HC against MCI and MCI against AD suggest that
the classification accuracy values are less inflated in RELM as
compared to LSVM.

The number of hidden layer nodes influences the performance
of the RELM classifier. In our experiment, we found 1000 number
of hidden layer generated the best performance in terms of
accuracy. Similarly, for SVM we set the default parameter defined
for the MATLAB library. We performed the classification by
varying different parameters on node2vec graph embedding.
Figure 4 shows the effect of different parameters of node2vec
on the performance of RELM classifier. We varied the walk
length of node2vec from 10 to 100. In all experiments, increased
value of walk length decreases the performance of classifier. For

this experiment, we fixed two other parameters, dimension and
number of walks to 32 and 200. Similarly, we set the parameters p
and q to correspond localized random walks. With the smaller
value of p and larger value of q, the random walk is easy to
sample to the high-order -order proximity. Thus, we selected p
and q randomly and performed graph embedding with p = 0.1
and q = 1.6.

DISCUSSION

Several studies based on rs-fMRI have been carried out for
the classification of AD and MCI from HC subjects. Binary
classification in combination of different classifier with different
feature measure reported the accuracy ranging from 85 to
95% for AD against HC and 62.90 to 72.58% to and MCI
against HC as shown in Tables 9, 10. These studies used
the same MCI and HC subjects from the ADNI2 cohort.
One can clearly notice that the number of subjects directly
influences the accuracy. As the number of subjects increase
the accuracy is decreased. As reported in previous section
the highest accuracy for the classification of AD from is
obtained in proposed work is 90.63% using the combination
of LASSO and LSVM. If we compare the results for MCI
against HC, the results obtained in current study outperform
all the state of art methods. However, it is not fair to
compare performance with other studies directly because each
work employ different datasets, preprocessing pipelines, feature
measures, and classifiers. Majority of works including (Eavani
et al., 2013; Leonardi et al., 2013; Wu et al., 2013; Wee et al.,
2014; Suk et al., 2016) have used subjects less than or nearly
equal to 30 in each subject class. The main reason behind
small number of dataset is the availability of fMRI data in
ADNI2 cohort. All of these studies performed classification
and made conclusion. Likewise, we also conducted our study
using ADNI2 cohort with nearly equal number of subjects with

TABLE 9 | Comparison of performance of binary classification AD against HC with state of the art methods using rs-fMRI.

Dataset Feature measures Classifier Accuracy (%) Reference

AD:77, HC: 173 Combination of FC matrices, FC dynamics, ALFF AUC 85 de Vos et al., 2018

AD: 12, HC: 12 Difference between DMN and SN map LDA 92 Zhou et al., 2010

AD: 34, HC: 45 Graph measures Naïve Bayes 93.3 Khazaee et al., 2017

AD: 15, HC: 16 Averaged voxel intensities of core regions in resting state
networks: DMN, DAN, VAN

Multivariate ROC 95 Wu et al., 2013

TABLE 10 | Comparison of performance of binary classification MCI against HC with state of the art methods using rs-fMRI.

Dataset Feature measures Classifier Accuracy (%) References

MCI: 31, HC: 31 Functional activity co-variations of ROIs SVM 62.90 Eavani et al., 2013

MCI: 31, HC: 31 Group sparse representation SVM 66.13 Wee et al., 2014

MCI: 31, HC: 31 SDFN SVM 70.97 Leonardi et al., 2013

MCI: 31, HC: 31 Deep auto encoder and HMM SVM 72.58 Suk et al., 2016

FC, functional connectivity; ALFF, amplitude of low-frequency fluctuation; AUC, area under the curve; DMN, default mode network; SN, salience network; LDA, linear
discriminant analysis; ROC, receiver operating characteristic; ROI, region of interest; AAL, automated anatomical labeling; DMN, default mode network; SDFN, sliding
window-based dynamic functional network; HMM, hidden markov model.
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previous studies and the cross validation was also done using
these dataset.

Mild cognitive impairment is a transitional stage between the
healthy non dementia and dementia stage2. This stage is further
divided into early MCI (EMCI) and late MCI (LMCI), according
to extent of episodic memory impairment. The risk conversion
from MCI to AD is higher in LMCI than in EMCI. In this
study, we included only EMCI subjects in MCI group. The MCI
converted and non-converted to is classified according to CDR
and MMSE score. MCI subjects whose CDR undergoes change
from 0.5 to 1 and MMSE score goes below 26 in subsequent
visits are considered to have fulfilled the criteria to be MCI
converted. In our study majority of subjects fulfill to be non-
converted MCI. Only few subjects either have changed CDR score
or MMSE score during the visits in the interval of 3, 6, 12, and
18 months. Additionally, none of the MCI subjects are recorded
in the list of AD subjects.

Limitations
While this study is focused on the stage diagnosis of AD
progression using fMRI alone using ADNI2 cohort, the major
limitation of this study is the limited sample size of ADNI2
(31 AD, 31 MCI, and 31 HC). In this context, the entire
population is not represented adequately with the dataset we
used. Thus, we cannot guarantee the generalization of our results
to other groups.

CONCLUSION

It is widely accepted that the early diagnosis of AD and MCI
plays an import role to take preventive action and to delay the
future progression of AD. Thus the accurate classification task
of different stages of AD progression is essential. In this study,
we demonstrated graph based features from functional magnetic
resonance (fMR) images can be used for the classification
of AD and MCI from HC. Additionally, we used multiple
feature selection techniques to cope with the smaller number
of subjects with larger number of feature representations. The
appropriate amount of features is extracted from standard
Alzheimer’s disease Neuroimaging Initiative cohort that lead
to maximal classification accuracies as compared to all other
recent researches. Among different feature section methods
LASSO together with LSVM on graph based features significantly
improved the classification accuracy.
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